Últimas noticias

We are happy to announce the release of Participation Chrome Extension. If you want to try it: 1. Go to https://chrome.google.com/webstore 2. Search 'gsi'   You should find these extensions:   3. Instal ...

The article "A text classification approach to detect psychological stress combining a lexicon-based feature framework with distributional representations", by Sergio Muñoz and Carlos A. Iglesias has been published ...

The article "Semantic Modeling of a VLC-Enabled Task Automation Platform for Smart Offices", by Sergio Muñoz, Carlos A. Iglesias, Andrei Scheianu and George Suciu has been published in the Electronics journal (2.39 ...

Canal GSI

The article "An Ensemble Method for Radicalization and Hate Speech Detection Online Empowered by Sentic Computing" by Oscar Araque and Carlos A. Iglesias has been published in the Cognitive Computation journal (4.307 impact factor, JCR Q1 2019).

The paper can be found at this URL.

Abstract:

The dramatic growth of the Web has motivated researchers to extract knowledge from enormous repositories and to exploit the knowledge in myriad applications. In this study, we focus on natural language processing (NLP) and, more concretely, the emerging field of affective computing to explore the automation of understanding human emotions from texts. This paper continues previous efforts to utilize and adapt affective techniques into different areas to gain new insights. This paper proposes two novel feature extraction methods that use the previous sentic computing resources AffectiveSpace and SenticNet. These methods are efficient approaches for extracting affect-aware representations from text. In addition, this paper presents a machine learning framework using an ensemble of different features to improve the overall classification performance. Following the description of this approach, we also study the effects of known feature extraction methods such as TF-IDF and SIMilarity-based sentiment projectiON (SIMON). We perform a thorough evaluation of the proposed features across five different datasets that cover radicalization and hate speech detection tasks. To compare the different approaches fairly, we conducted a statistical test that ranks the studied methods. The obtained results indicate that combining affect-aware features with the studied textual representations effectively improves performance. We also propose a criterion considering both classification performance and computational complexity to select among the different methods.