

CARS and Beacons:

Context-aware Recommender Systems using Indoor Localization

Jürgen Dunkel Hannover University of Applied Sciences and Arts

About me

- professor of computer science at Hochschule Hannover
 - cooperation with the AI group at URJC

- interested in Software Architecture, Intelligent Systems
 - especially in stream-based systems (Complex Event Processing)
 - Semantic Web, ontologies, data analysis
- recent projects: context-aware systems using CEP
 - application domains: M2M systems, RFID, iBeacons
- current work: mining data streams, infering CEP rules

Outline

A. CARS: Context-aware Recommender Systems

 Ramón Hermoso, Jürgen Dunkel, Jan Krause: Situation Awareness for Push-Based Recommendations in Mobile Devices, 19th Intern. Conf. on Business Information Systems (BIS) conference, 2016

B. Beacons and Indoor Localization

- W. Zimmermann: Indoor navigation with iBeacon Technology (master thesis)
- experiences of a student project using iBeacons
- experiences of two RFID research projects

A. CARS: Context-aware Recommender Systems

- 1. Motivation: CARS
- 2. Situation-aware Recommendation Process
- 3. Detailed Design
- 4. Conclusion

- 1. Motivation: CARS (Context-aware Recommender Systems)
- CARS make use of context to make individualized recommendations
 - context = situation of the user (age, gender, special interests...)
 - <u>challenge</u>: some type of context is frequently changing: user location, behaviour, ...

goal: CARS architecture providing situation-awareness

where to go next ?

depends on:

- visitor interests
- visitor location
- room occupancies

- User Agents (smartphone app)
 - knows user preferences (artists and art styles)
 - knows user situation (using GPS, iBeacons, acceleration sensors,...)
 - triggers recommendations

- Environmental Manager (server component)
 - structural knowledge:
 - o about the museum: floor plan, location of artworks, beacons,...
 - about art: how to relate user preferences to certain artwork
 - situational knowledge: current situation of all users

User Agents (UA): provide EM with current user situation

- 1. Recommendation Triggering
 - if the user is entering a new environment
 - if she is in an appropriate situation

2. Post Filtering

- filters out received recommendation

Environmental Manager (EM): makes recommendations

- 1. evaluates current situation of all users
- 2. infers the global situation of the environment
- 3. applies recommendation rules

Structural Knowledge: expert knowledge about a domain

- using ontologies
- TBox: conceptional knowledge (=concepts)
- ABox: assertional knowledge (=facts)

Situational Knowledge: current state in an environment

- exploiting live data (e.g. sensors)
- each data set corresponds with a particular event
- high change frequency

3. Design – User Agent

Knowledge base (RDF):

:User1 :likesArtist :Kandinsky; :likesStyle :Expressionism; :speaks :Spanish; :isLocatedIn :EntranceHall; :hasAppointmentAt :"12:30".

3. Design – User Agent

Situational Rules (CEP):

3. Design – User Agent

Recommendation Triggering (DL Rule):

IF currentTime>timeOfLastRecommendation+15min

- ^ changeLocation(?user)
- ∧ notInMuseumShop(?user)
- ^ noUpcomingAppointment(?user,currentTime+20min)
- THEN triggerRecommendation(?user)

3. Design – Environment Manager

Situation Awareness (CEP rule):

3. Design – Environment Manager

Knowledge Base (OWL):

:Painter rdfs:subClassOf :Artist. :Expressionism rdfs:subClassOf :ModernArt.				:Macke :a :Painter; :style :Expressionism; :hasPainted :Promenade.
:Kandinsky	:a :style :hasPainted	:Painter; yle :Expressionism; sPainted :The_Rider.		:The_Rider :hangingIn :Room_13. :Promenade :hangingIn :Room_15.

3. Design – Environment Manager

Recommendation Rule (DL Rule):

4. Conclusion

- our approach for a CARS integrates
 - CEP to achieve situation awareness exploiting sensors
 - ontologies to describe structural domain knowledge
 - semantic rules for specifying individual recommendations

- key features
 - situation are referred in real-time
 - high flexibility due to rule-based approach
 - supports **privacy**: private information of the user is not revealed

4. Future Lines of Research

currently implementing the system for

the Landesmuseum Hannover

- learning recommendations from the users behaviour
 - machine learning,
 - collaborative filtering,...

B. Indoor Navigation with iBeacons

- 1. Indoor Positioning in General
- 2. iBeacons
- 3. Positioning Methods
- 4. Indoor Navigation

1. Indoor Positioning in General

Different Technologies

- GPS: doesn't work in buildings or is imprecise
- WiFi: estimating distance to WLAN access points using the signal strength
 - problems: high reach, but large distances difficult to estimate
- Bluetooth: Beacon technology
 - shorter reach than WiFi
- RFID: passive tags, different frequence bands (UHF, VHF)
 - expensive readers
 - imprecise

1. Indoor Positioning in General

	#Sender	#Reader	Accuracy	
WiFi	few senders	1 reader	low	
	per floor	per person		
RFID	1 sender per	1 reader	medium	
	person	per room		
Beacon	many	1 reader	high	
	senders per	per person		
	room			

2. iBeacons

- Beacons are small devices
 - have batteries: send an ID during 1-2 years
 - up 70 meters
 - based on Bluetooth Low Energy (BLE)
 - are cheap (10-20 €)
- iBeacon standard from Apple (2013)
 - Apple defines a protocol: sending periodically a hierarchical ID

Manufacturer-specific data payload

Flags 0x02-01-1A	Length 0x1A	Type 0xFF	Company ID 0x00-4C	Beacon-Type 0x02-15	Proximity UUID	Major ID	Minor ID	Meas. Power
-	-	-					-	

iBeacon contents

• Eddystone: similar standard from Google (2015)

2. iBeacons – Setup (1/2)

- Beacon signal can be read by every (mobile) devices understanding BLE
 - from iOS7 or AndroidOS 4.3
 - no expensive readers necessary

Different Scenarios:

phones move

NIVEA PROTECTION Using beacons in ads

beacons move

2. iBeacons – Positioning with Beacons

Monitoring

- scan Beacon IDs
- system notification when a device enters or leaves the beacon region

Ranging

- estimates the proximity to an iBeacon
 - a) in iOS expressed by a proximity value: IMMEDIATE, NEAR, FAR, UNKNOW
 - b) RSSI (received signal strength indication) signal
- problem: objects can reduce the signal strength

3. Positioning Methods – Trilateration

- estimating the position
 - by knowing the distance to 3 different location
 - intersection of three spheres

- advantage
 - easy to deploy
 - fast

- disadvantage
 - lack of precision

3. Positioning Methods – Fingerprinting

- constructing a map with the measured RSSI
 - offline phase
 - and online phase

- advantage
 - high precision

- disadvantage
 - high effort

3. Positioning Methods – Proximity

- reading the proximity
 - position of the iBeacon is the user position
 - using proximity NEAR means user is within a range of 2 meters

- advantage
 - easy to deploy

- disadvantage
 - many beacons necessary

4. Indoor Navigation

- approach in the master thesis
 - combining proximity and smartphone sensors
 - interpolation approach: detecting steps and the direction (using smartphone compass)

Experiment Results

- ▲ Start
- Destination
- → Real track
- Estimated Track

4. Indoor Navigation – Experiences

- Setup:
 - beacons located in 2 meter height
 - proximity NEAR (=2 meter)

- Problems
 - difficult to estimate the direction of footsteps with the compass
- Solution approach
 - taking more sophisticated domain knowledge into account
 - floor layout!: what are the areas a user can walk, what are steps she cannot do,

Thank you!